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Title 
Field Data Based Data Fusion Methodologies to Estimate Dynamic Origin-Destination Demand 
Matricies from Multiple Sensing and Tracking Technologies 

Introduction 
Modern technologies can use various types of sensors to collect traffic data; these include GPS, 
blue tooth, video, automatic vehicle identification (AVI), plate scanning, etc. Based on the 
characteristic of data collected by sensors, sensors can be categorized as follows. (a) Counting 
sensors: these sensors can count vehicles on a single lane or a set of lanes in the network. (b) 
Image/video sensors: these sensors can take images or videos of moving flows. (c) Vehicle-ID 
sensors: these sensors can be used to identify vehicle IDs in the network. Those 
sensors/technologies can get variant traffic data including link counts, intersection turning 
movements, flows and travel time on links and partial paths. This research seeks to propose a 
Bayesian method and tries to synthesize these multiple sources of data together to estimate 
dynamic O-D demand, thereby filling a key gap in the current dynamic O-D demand estimation 
literature. 

Findings 
The proposed Bayesian method can synthesize multiple sources of data well and provide good 
estimation. It was shown that the source-specific deviations between estimated and observed 
traffic counts are all small. It also implies that more traffic counts can lead to smaller variance of 
the dynamic O-D demand, which means each added traffic count can reduce the uncertainty in 
the O-D estimation. The proposed Bayesian statistical method can provide not only point 
estimates of dynamic O-D demand, but also the corresponding statistical information of the 
estimates. These statistical information can quantize the stochastic of the O-D estimates. 

Recommendations 
The proposed Bayesian method can effectively synthesize multiple sources of data and estimate 
dynamic O-D demands with fine accuracy. The proposed model and algorithm can be used to 
analyze the impacts of various sensor types for dynamic O-D demand estimation. Future, this 
research serves as a foundational methodology for urban transportation applications. 
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CHAPTER 1.  A BAYESIAN METHOD FOR DYNAMIC ORIGIN-DESTINATION 

DEMAND ESTIMATION SYNTHESIZING MULTIPLE SOURCES OF DATA 

1.1 Introduction  

Time-dependent origin–destination (O-D) matrices are essential inputs for dynamic 

traffic assignment (DTA) models. Reliable time-dependent O-D demand matrices have become 

useful for many real-time traffic planning and management applications, such as the online 

evaluation of Intelligent Transportation System (ITS) strategies and real-time route guidance. In 

general, O-D demand matrices can be obtained either from household surveys or estimated by 

traffic counts. O-D demand obtained by household surveys is not only costly but also vulnerable 

to become outdated. Thus the use of traffic counts to estimate O-D demand becomes attractive 

because it is cheap, ease to collect data and to implement. 

There is a rich body of literatures estimate static or time-dependent O-D demand using 

link counts. As the number of independent link counts is usually far less than the number of 

time-dependent O-D pairs, it results in an underspecified (or degenerate) problem that has no 

unique solution (Hazelton 2001). Therefore, additional information is needed to acquire a unique 

solution for the O-D estimation problem. Modern technologies can use various types of sensors 

to collect traffic data; these include GPS, blue tooth, video, automatic vehicle identification 

(AVI), plate scanning, etc. Those sensors/technologies can get variant traffic data including link 

counts, intersection turning movements, flows and travel time on links and partial paths. 

Based on the characteristic of data collected by sensors, sensors can be categorized as 

follows. (a) Counting sensors: these sensors can count vehicles on a single lane or a set of lanes 

in the network, including inductive loop detectors, magnetic detectors, etc. One can use vehicle 

count data to measure traffic characteristics such as speed, density, occupancy, and flow rates. 

(b) Image/video sensors: these sensors can take images or videos of moving flows. For example, 

a fixed camera or video can be used to measure flows at an intersection. By processing the 

images or videos, it is able to collect positions of moving vehicles in the scene. (c) Vehicle-ID 

sensors: these sensors can be used to identify vehicle IDs in the network. For instance, license 

plate readers which use camera images, or Automatic Vehicle Identification (AVI) readers which 

use radio-frequency identification (RFID) tags or bar-codes, can be deployed over lanes or on the 
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roadside to detect vehicles. GPS can be deployed on vehicles to track its route. With image based 

and vehicle-ID based sensors, full or partial path information such as path flows or travel times 

can be inferred. 

Although various sources of data can be used in O-D demand estimation, most literatures 

tend to use just one source of data, or combine it with link counts; very few studies synthesize 

multiple sources of data together to estimate O-D demand. Synthesizing multiple sources of data 

is difficult because they are correlative and complementary each other thus cannot be simply 

combined together. Hence, the statistical correlations among them should be analyzed. 

Moreover, most literatures do not make use of travel times (travel times on links or partial paths) 

in O-D estimation. This is because the connections between travel time and O-D demand cannot 

be measured directly. However, travel time data can often be collected much more easily (e.g., 

by Vehicle-ID sensors) than the volume data (especially along a path or a partial path). 

Therefore, it is worthwhile to consider the travel time data in O-D demand estimation. 

To bridge the gap above, this paper tries to synthesize multiple sources of data together, 

mainly including link counts, time-varying flows and travel time along partial observed paths, 

and turning movements at intersections, to estimate dynamic O-D demand. Specifically, we treat 

each time-dependent O-D demand as a random variable satisfying normal distribution, and 

propose a Bayesian statistical model to estimate dynamic O-D demand by synthesizing these 

multiple sources of data. By solving the dynamic user equilibrium (DUE) problem based on an 

assumed prior O-D demand, the prior distribution (including an vector of expected values and a 

variance-covariance matrix) of all considered variables is estimated. The relationships among all 

variables are analyzed by variance-covariance matrices. By updating the assumed prior 

distribution of all variables using traffic counts, we establish the posterior distributions of all 

variables, based on which point estimation and probability confidence intervals are inferred to 

measure the intrinsic uncertainty. In the proposed Bayesian statistical model, we convert the 

observed sub-path travel time to several sub-path flows so as to incorporate sub-path travel time 

information in O-D estimation. Specifically, for a sup-path with a given departure time, we 

sample the normal distributed sub-path travel time to get arrival time for each user, and the mean 

of all the normal distributed sub-path travel times is equal to the observed sub-path travel time. 

By this sampling method we convert the sub-path travel time information to sub-path flows 

which is more appropriately analyzed in O-D estimation. 
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1.2  Literature review  

1.2.1 Static O-D demand estimation  

O-D demand estimation was studied extensively for static case. It usually uses a prior 

matrix (or seed matrix) in order to obtain a unique solution. Overall, these methods can be 

classified as:  

(1) Least squares (Cascetta 1984; Cascetta and Nguyen 1988; Doblas and Benitez 2005) 

and generalized least squares (GLS) (Bell 1991; Nie and Zhang 2010; Caggiani et al. 2013) 

methods. These methods are usually bi-level problems. The upper level is to minimize the 

weighted distances between the target and estimated OD demands, and between the measured 

and estimated traffic volumes; the lower level model is a static user equilibrium problem. 

(2) Entropy concept based methods (Van and Willumsen 1980; Xie et al. 2011). These 

methods maximize the entropy subject to a set of constraints. The entropy concept measures how 

reasonable and close to reality of an estimated O-D matrix. Subject to the prior O-D matrix, the 

probability distribution of O-D demand which best represents the current state of knowledge is 

the one with the maximum entropy. 

(3) Maximum likelihood methods (Spiess 1987; Parry and Hazelton 2012). These 

methods maximize the likelihood of the prior O-D matrix and the observed traffic counts 

conditional on the estimated O-D matrix. The elements of the prior O-D matrix are assumed to 

be obtained from a set of random variables with given probability distribution. 

(4) Bayesian inference (Maher, 1983; Hazelton 2001; Hazelton 2010; Perrakis et al.  

2012; Wei and Asakura 2013) and Bayesian network (Tebaldi and West 1998; Castillo et al.  

2008b, c; Cheng et al. 2014) methods. These methods treat traffic flow as random variables. 

Using observed traffic counts to update the assumed prior distribution, the posterior distribution 

of all variables is built based on Bayes theorem. 

 

1.2.2 Dynamic O-D demand estimation 

Estimating time-dependent O-D demand is more complicated than the static O-D case 

due to its time-varying characteristic. Some studies straightforwardly extend methods of static O-

D estimation to the dynamic case using time-varying link counts. For example, Cascetta et al. 

(1993) proposed a GLS method to estimate dynamic O-D demand based on a simplified 

https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Entropy_(information_theory)
javascript:void(0);
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assignment model on a general network. Following Cascetta et al. (1993), Sherali and Park 

(2001) proposed a constrained least squares (CLS) formulation but solved for path flows rather 

than O-D demand. Based on the bi-level formulation proposed by Fisk (1988) for the static O-D 

estimation, Tavana and Mahmassani (2001) proposed a bi-level generalized least squares 

optimization model with an iterative solution framework to estimate the dynamic O-D demand. 

Based on a least square modeling approach, Bierlaire and Crittin (2004) proposed an algorithm 

for sparse least squares that is computationally efficient to favor real-time estimation and 

prediction of dynamic O-D demand. Okutani (1987) first introduced state space model into 

dynamic O-D estimation with the state vector indicating the unknown O-D flows. Since then, the 

state-space model is further studied by Ashok and Ben-Akiva 1993, Zhou and Mahmassani 

(2007), Cho et al. (2009), etc. 

Note that most existing methods for dynamic O-D estimation problem are characterized 

by a bi-level optimization structure. The upper-level problem is to minimize two deviation 

functions: (1) the deviation between observed and estimated traffic counts over all time intervals, 

and (2) the deviation between the target or historical demand and estimated demand matrices. 

The lower-level problem is the DTA problem, which determines a time-dependent network flow 

pattern that satisfies dynamic user equilibrium (DUE) condition. For example, Kattan and 

Abdulhai (2006) proposed a non-iterative approach to dynamic O-D estimation based on a 

machine-learning technique using advanced parallel evolutionary algorithms. Balakrishna et al.  

(2008) and Cipriani et al. (2011) introduced gradient approximation methods within a 

simultaneous perturbation stochastic approximation framework in order to reduce the number of 

simulation runs when calculating numerical derivatives or gradients. Huang et al. (2012) 

developed an approach to estimate travel demand in a large-scale microscopic traffic simulation 

model based on a Guided Genetic algorithm with a distributed implementation to improve 

computational efficiency and reduce memory requirements. Recently, Tympakianaki et al.  

(2015) applied a Cluster-wise simultaneous perturbation stochastic approximation algorithm to 

the dynamic O-D estimation. 

Meanwhile, single-level formulations have also been proposed for the dynamic O-D 

demand estimation problem. For instance, Nie and Zhang (2008) formulated a novel single-level 

formulation based on variational inequalities (VI), which utilizes the dynamic link-path 

incidence relationships in a generic projection-based VI solution framework. Based on a single 
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level reformulation, Lundgren and Peterson (2008) proposed a heuristic algorithm to address the 

dynamic O-D demand estimation problem, which is an adaptation of the projected gradient 

method. 

 

1.2.3 O-D demand estimation using multiple source data 

Due to recent advances in real-time sensing technologies, a variety of sensors can be used 

to collect different types of traffic data, such as GPS, Bluetooth, video camera, AVI, plate 

scanning, etc. With these sensing technologies, one can process the data to obtain traffic data 

measurements on links, turning movement counts at nodes, and full or partial vehicle trajectories 

along the path. 

Turning movements at intersections are normally detected by Image/video sensors. 

Intersection turning movements provide more information on users’ travel behavior and usage of 

network topologies than link counts. Several studies estimate O-D demand by using turning 

movements at intersections. For instance, Yang et al. (1998) proposed a neural network approach 

to estimate dynamic O-D demand using node-based traffic counts. Alibabai and Mahmassani 

(2009) presented a dynamic O-D estimation model based on a bi-level optimization method that 

utilized both turning movement volumes and link volumes. Lu et al. (2014) proposed a Kalman 

filter approach to estimate dynamic O-D demand using link counts and observed turning 

movements. 

To estimate O-D demand, path-based information is more desirable because they can 

fully reflect uses’ route choice behavior and network topology. However, path information 

cannot be fully detected, so researchers normally make use of observed flows or data on partial 

path, which can be captured by GPS, mobile phone, plate scanning, AVI, etc. For instance, to 

estimate static O-D demand, Parry and Hazelton (2012) proposed a likehood-based statistical 

model combing link counts and sporadic path data. Castillo et al. (2013) presented a Bayesian 

method based on plate scanning. Recently, Hu et al. (2015) proposed link-based and path-based 

models to estimate O-D demand based on traffic counts by vehicle detector sensors and license 

plate recognition. In dynamic case, Dixon (2000) proposed a three-stage procedure to estimate 

O-D demand from transponder-based AVI data. Recognizing low identification rates associated 

with license-plate based AVI data, Van der Zijpp (1997) proposed a constrained optimization 

formulation to estimate the unknown O-D demand and identification rates jointly. Antoniou et al.  
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(2004) introduced path-flow proportion matrices that relate O-D demand to sub-path tag counts, 

and extended Ashok’s framework (1996) to estimate and predict tagged vehicular O-D demand. 

Zhou and Mahmassani (2006) proposed a nonlinear ordinary least-squares model to 

systematically combine AVI counts, link counts, and historical O-D demand information.  

In real application, observing partial path or sub-path flow could be difficult and costly. 

However, path-based travel time can be observed much easily and thus can be used in O-D 

estimation. For example, based on the transponder tag data collected from a freeway corridor in 

Houston, Dixon and Rilett (2002) applied the framework developed by Cascetta et al.(1993) to 

calculate the link-flow proportions based on the observed travel time from AVI counts. By 

adapting the analytical approach of Ghali and Smith (1995) for evaluating the local link marginal 

travel times, Qian and Zhang (2011) incorporated the travel time gradients into the single-level 

O-D estimation framework proposed by Nie and Zhang (2008) in order to utilize travel time 

measurements. 

Except for the above measurements, O-D demand is also estimated by using other types 

of traffic information. For instance, Chang and Wu (1994) made use of flow counts across screen 

lines and cordon lines in dynamic O-D demand estimation. Since speed and density provide the 

best representation of traffic congestion, some researchers made use of these traffic measures to 

estimate dynamic O-D demand (see, for example, Balakrishna 2006; Lu et al. 2013). 

Additionally, Iqbal et al. (2014) and Lauren et al (2015) made use of mobile phone data to infer 

O-D trips. 

 

1.3 Methodology 

To estimate the dynamic OD demand in Chennai, a Bayesian statistical method is used. 

And we do the following assumptions: 

Assumption 1：The traffic demands between all time-dependent OD pairs are assumed 

to follow multivariate normal (MVN) distributions. 

Assumption 2: It is assumed that the time-dependent path flow is the product of path 

choice proportion and the time-dependent OD matrices, where the path choice proportion is a 

deterministic variable, which can be obtained from solving the dynamic user equilibrium 

problem. And the time-dependent choice proportion of sub-path, turning movement at 

intersection and link can be derived from the path choice proportion. 
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Based on assumption 2, the whole sets of random variables involved in our model are 

related by the linear expression: 

 

(1) 

where , , , ,  are vectors of time-dependent OD demand, path flows, sub-path 

flows, intersection turning movements and link flows, respectively. , ,  and  are the 

corresponding choice proportion matrices, which can be obtained by solving the dynamic traffic 

assignment problem. ,  and  are the error terms and their expected values are all zero. 

Then according to assumption 1, the prior distribution of all variables can be derived 

from the historical data. Then based on the traffic counts, the posterior distribution can be 

obtained by using the following updating formula (Maher, 1983): 

 (2) 

 (3) 

where  and  both refer to the sets of all variables;  is the set of observed variables, 

respectively;  and  are the mean vector and covariance matrix of the observation ;  is 

the covariance matrix of  and ;  is the covariance matrix of  and ;  and  are the 

mean vector and covariance matrix of the observation ;  is the covariance matrix of  and ; 

 is the actual observed value of . 

   To simplify the calculation, we updated the traffic counts one by one. In this case, 

matrix inversion is avoided. Figure 1.1 shows the whole process of our method. 

 

1.4 Methodology 

We demonstrate the proposed method using Nguyen–Dupuis network, as shown in Figure 

1.2. It consists of 13 nodes, 38 bidirectional links. Six nodes {12, 1, 4, 8, 2, 3} are terminal 

nodes, which could be either origins or destinations. Vehicles can travel from left to right (from 

origins {12, 1, 4} to destinations {8, 2, 3}) or from right to left (from origins {8, 2, 3} to 

destinations {12, 1, 4}). So in total there are 18 O-D pairs. The O-D matrix is time-dependent 

with 15-minute intervals and the number of time intervals is six. Demand for each O-D pair at 

each departure time is 30 in the seed matrix. We suppose the “true” O-D demand matrix is 
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known, which is generated from the seed matrix randomly. The observed data is assumed to be 

collected by sensors in the network. Specifically, we assign the “true” matrix in the network by 

DUE method and place sensors in the network to obtain the sensor data, which collects flows on 

4 sub-paths, time-dependent turning movements at 18 intersections and time-dependent link 

counts on 30 links. These sensor data, as tabulated in Table 1, serve as our observed data. In such 

a manner the observed data is consistent with the "true" matrix and assignment method in the 

model. We then try to estimate time-dependent O-D reversely from the observed data to match 

the "true" matrix. The DUE method is a standalone procedure in the model, which can be solved 

by off-the-shelf traffic software. In this paper we used a dynamic assignment and simulation 

model - DYNASMART-P 1.3.0 - to solve DUE. 

To measure the performance of the proposed Bayesian method and the algorthim, three 

aggregate measures were used: the percentage root-mean-square error (%RMSE), the mean 

absolute error (MAE) and Theil’s inequality coefficient  (Toledo and Koutsopoulos, 2004) for 

traffic counts, to measure the fit between estimated and observed traffic counts: 

 

(4) 

 
(5) 

 

(6) 

where  is the number of measurements,  is the estimated measurement, and  is 

the observed measurement. Note that the value of  is between zero and one.  implies a 

perfect fit between the estimated and observed measurements, while  indicates the worst 

possible fit. 

Similarly, to measure the fit between estimated and “true” O-D demand, three measures 

were used as following: 
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(7) 

 
(8) 

 

(9) 

where  is the number of O-D pairs,  is the estimated O-D demand, and  is the 

“true” O-D demand. 

Start from the seed matrix and the sensor data, the time-dependent O-D demand is 

estimated by the procedure introduced in Section 5. The value of  in step 1 is 0.5,  in step 4.1 

is 1.0 and  in step 7 is 0.1.  

The total O-D variance is the sum of variance of each time dependent O-D demand. 

Figure  3 shows how the total O-D variance changes within one iteration after the traffic count is 

updated one by one. It shows that the total O-D variance is decreasing with each added and 

updated traffic count. Smaller variance means lower uncertainty in the estimation, so updating 

each traffic count can improve accuracy of O-D estimation. Figure 1.3 also indicates that more 

traffic counts can lead to lower variance of the dynamic O-D demand estimation, since more 

updated information can be used to improve the O-D estimation. Because traffic counts are 

updated one by one in the proposed algorithm, when new traffic data comes in, no need to 

resolve the Bayesian statistical model from scratch but just need to continue to update the 

procedure with the additional traffic data. In real-world applications, we can measure the quality 

of traffic data by analyzing the resultant variance of the dynamic O-D demand estimation, so as 

to determine whether to add additional traffic data in the procedure or not. 

Figure 1.4 illustrates how the measures of traffic count performance change at each 

iteration. It shows that three measures of performance have similar trends and they are all 

decreasing by iterations (although there are small fluctuations). This indicates that the proposed 

method normally can identify a solution that reduces the total error of traffic counts compared to 
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that of last iteration. There are 30 iterations shown in Figure  4, till which the three measures of 

performance become flat. Noticeably, after 30 iterations, %RMSE  has been reduced from 

around 36% to 6%, MAE has been reduced from around 51.00 to 7.00, and Theil’s inequality 

coefficient  has been reduced substantially from the initial value 0.25 to 0.035. These results 

demonstrate the high qualtiy of the proposed Bayesian method for dynamic O-D estiamtion. 

Tables 1.1, 1.2 and 1.3 show the relative errors between the estimated and observed sub-

path travel time, node turning movements and link flows respectively. Note that the relative 

errors of almost 50% traffic counts are less than 5%, and the relative errors of 85% traffic counts 

are less than 10%. Note that relative errors of traffic counts with high values are small.  

Specifically, for the sub-path travel time, the relative errors are all small and less than 5%. For 

the node turning movement, relative errors of about 80% estimation are less than 10%. For the 

link counts, about 80% of the relative errors are less than 10% and over 50% of them are less 

than 5%. These results indicate that not only the total error of the estimation obtained by the 

proposed Bayesian method is reduced significantly (as also shown by Figure 3), but also the 

errors for each type of traffic counts are small. This demonstrates that the proposed Bayesian 

method can synthesize multiple sources of data well and provide good estimation. 

The proposed method can provide not only the point estimates (i.e., expected values), but 

also the variances, which represent the associated uncertainty for the corresponding O-D 

demand. Based on the expected values and variances, we can obtain the posterior distribution of 

the time-dependent O-D demand. According to the posterior distribution, the confidence 

intervals for each O-D demand can be identified. In summary, the proposed Bayesian statistical 

method can provide not only point estimates of dynamic O-D demand, but also the 

corresponding statistical information of the estimates. 

Based on the posterior distribution of the time-dependent O-D demand, Figure 1.5 shows 

the 95% confidence intervals for each time-dependent O-D demand estimates. Note that because 

most variances are small, the lengths of the 95% confidence intervals are also small, which 

means low uncertainty involved in the estimated O-D demand. It can be seen that the length of 

intervals for some O-D demand estimates are much smaller than lengths of others. This is 

because according to the traffic assignment proportions of traffic counts (i.e., ,  and  in Eq. 

(31)), some O-D pairs have much more traffic counts related to them. In such a case, the 

corresponding variance and length of confidence interval could be small since it has more 
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information to update them and reduce the variability. In fact, if we have more observed traffic 

counts, the variances will be even smaller and the resultant O-D demand estimates have even 

lower uncertainty (as demonstrated by Figure 1.2). This gives a hint to determine which links, 

nodes and/or paths need to be observed when estimating traffic flows by the Bayesian method, 

that is, the network sensor location problem. We can locate sensors on a set of links, nodes 

and/or paths which lead to lower uncertainty of the dynamic O-D demand estimation. Since this 

problem is out of the scope of this paper, we leave this problem for future research. 

Table 1.4 shows the values of three measures (as shown in Eqs. (38-40)) related to the 

performance of O-D demand estimates. According to the three measures, it can be seen that the 

total error between the estimated and “true” O-D demands is relatively small. For example, the 

resultant OD_U is around 0.1. It also can be seen that the errors between the estimated and “true” 

O-D demands in some time intervals are larger than errors in other time intervals. This is because 

in those time intervals with larger errors, only a few traffic counts are related to the O-D pairs in 

the considered time intervals. Thus the precision of the O-D demand estimates is much lower. 

To further study the impact of the number of traffic counts on the precision of the O-D 

demand estimates, take the O-D demand estimates in time interval 2 for example. Table 1.5 

compares performance of O-D demand estimates with different number of traffic counts related 

to the considered time interval. For comparison purpose, only traffic counts on links are 

considered in Table 1.2. When users from an O-D pair in time interval 2 use a link collecting 

traffic counts, traffic count on this link is treated as related to the O-D pair in time interval 2. 

From Table 1.5, it can be seen that when the number of related traffic counts increases, the error 

between the estimated and “true” O-D demands decreases, as demonstrated by the changes of the 

three measures’ values. Thus, if we have more observed traffic counts, the errors will be even 

smaller and the resultant O-D demand estimates have even higher accuracy. In summary, 

according to Figure 1.4 and Table 1.4, more observed traffic counts can lead to lower uncertainty 

and higher precision of O-D demand estimates. 
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Figure 1.1 Bayesian statistical method  
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Figure 1.2 The Nguyen-Dupuis network  
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Figure 1.3 O-D variance after updating each traffic count in one iteration  
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Figure 1.4 Measures of performance after each iteration   
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Figure 1.5 95% confidence intervals for O-D demand estimates    
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Table 1.1 Oberved and estimated sub-path travel time 

Sub-Path Departur
e time Observed Estimate

d 
Relative 
error (%) Sub-Path Departu

re time Observed Estimate
d 

Relative 
error (%) 

5-6-7-8 1 7.5 7.45 0.67 5-9-10-11 2 7.5 7.34 2.13 
5-6-7-8 3 5 4.83 3.4 5-9-10-11 4 7 7.1 1.43 
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Table 1.2 Oberved and estimated node turning movements 

Turning 
movement 

Departure 
time 

Observ
ed 

Estimate
d 

Relative 
error (%) 

Turning 
movement 

Departure 
time 

Observ
ed 

Estimate
d 

Relative 
error (%) 

2-11-10 0 63 68 8.00 7-6-5 3 36 27 25.00  

10-6-12 1 41 51.21 24.90 7-6-12 4 40.72 44 8.06  

3-11-10 1 91 82.07 9.81  7-6-5 4 127.26 120.02 5.69  

2-11-10 1 124 132 6.45  2-11-7 4 57.92 63 8.77  

7-6-5 2 39 40 2.56  2-11-10 4 73.42 74.34 1.25  

7-11-3 2 50 47 6.00  7-6-12 5 70.86 75.7 6.83  

3-11-10 2 35 32.67 6.66  7-6-5 5 108.25 105.87 2.20 

2-11-10 2 138 141 2.17  2-11-10 5 52 53.66 3.19  

10-6-12 3 35 36 2.86  7-6-12 6 34.63 32.75 5.43  
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Table 1.3 Oberved and estimated link flows 

Link Departur
e time Observed Estimate

d 

Relative 
error (%) Link Departur

e time Observed Estimate
d 

Relative 
error (%) 

8-12 0 143.06 138.28 3.34  3-13 3 140.09 147.18 5.06  

5-9 0 161 163.11 1.31  3-13 4 142.35 150.56 5.77  

3-13 0 139 163.42 17.57 5-6 4 140 142 1.43  

4-5 0 137 146.5 6.93  6-5 4 179.26 176.59 1.49  

12-8 1 154.26 161.94 4.98  7-8 4 167.25 153 8.52  

8-12 1 189.81 192.39 1.36  8-7 5 159.23 166.01 4.26  

5-9 1 285 282.8 0.08  12-8 5 216.47 194.13 10.32  

9-5 1 240 260.61 8.59  8-12 5 186.88 189.59 1.45  

8-12 2 147.23 147.96 0.50  1-12 5 195.59 172.38 11.87  

12-1 2 136 160.04 17.68  3-13 6 93.34 96.43 3.31  

5-9 2 339.94 337.66 0.67  12-8 6 141.67 121.21 14.44  

9-5 2 322.75 311.92 3.35  8-12 6 128.86 138.79 7.71  

1-12 3 99.67 88.73 10.98 12-1 6 107.41 111.69 3.99  

5-9 3 284.45 309.13 8.68 5-6 6 21 25 19.05  

9-5 3 100.96 97.64 3.29 9-13 6 35.11 34 3.16  
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Table 1.4 Comparison between estimated and true O-D demand 

Time interval %OD_RMSE OD_MAE OD_U 

0 22.17% 8.36  0.11 

1 34.97% 13.00  0.18 

2 31.42% 11.53  0.16 

3 29.22% 11.77 0.15 
4 15.07% 5.53  0.07 

5 23.20% 9.29 0.11 

Total 25.30% 9.42  0.12 
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Table 1.5 Performance of O-D demand estimates with different number of traffic counts (time 
interval = 2) 

Number of related traffic 
counts 

%OD_RMSE OD_MAE OD_U 

4 33.69% 12.87  0.18 

8 31.55% 11.66 0.17 

12 21.04% 8.09  0.11 

16 18.95% 7.76  0.10 
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CHAPTER 2.  OPTIMAL HETEROGENEOUS SENSOR DEPLOYMENT STRATEGY FOR 

DYNAMIC ORIGIN-DESTINATION DEMAND ESTIMATION 

2.1  Introduction 

O-D demand has been estimated using traffic data measurements which can be obtained 

through sensor installation, as introduced in chapter 1. However, in real-world applications, 

sensors cannot be installed on every link, node and/or path in the network due to limited budget. 

This motivates the need to optimally determine the locations of sensors in the network. As the 

locations of sensors in the network can significantly affect the accuracy and reliability of the O-

D demand estimates, the network sensor location problem (NSLP) has received a lot of attention 

in recent years. 

Most existing NSLP models are designed for static O-D demand estimation, and sensors 

are usually located on links only. Because the actual O-D demand is usually unknown in 

determining the sensor locations, indirect quality measures that do not need knowledge of the 

exact O-D demand are used in most existing NSLP models. For example, Lam and Lo (1990) 

proposed to use traffic flow volume and O-D coverage criteria to determine priorities for locating 

sensors. Yang et al. (1991) introduced the maximum possible relative error (MPRE) criterion to 

calculate the most possible deviation of the estimated O-D demand from the unknown true O-D 

demand. Yang and Zhou (1998) further proposed four basic location rules, namely the maximal 

flow fraction rule, the O-D covering rule, the maximal flow interception rule, and the link 

independence rule. Yim and Lam (1998) evaluated several of these rules on a large-scale 

network. Bianco et al. (2001) proposed an iterative two-stage procedure and several priority-

based greedy heuristics to cover the O-D demand and reduce the MPRE value. Gan et al. (2005) 

introduced a modified MPRE formulation, termed the expected relative error (ERE), to represent 
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the expected error between the true and estimated O-D demands. Bierlaire (2002) proposed the 

total demand scale (TDS) measure to calculate the difference between the maximum and 

minimum possible total demand estimates, which can be used for both static and dynamic O-D 

demand estimation. Chen et al. (2012) extended the TDS measure to consider the quality 

measure at different spatial levels, and labeled it the generalized demand scale (GDS) measure. 

Simonelli et al. (2012) proposed a synthetic dispersion measure (SDM), which is related to the 

trace of the covariance matrix of the posterior demand estimates conditional upon a set of sensor 

locations. Based on the trace of the covariance matrix of the posterior traffic flow estimates, Zhu 

et al. (2014, 2015) proposed a stepwise method to identify sensor locations for the traffic flow 

estimation, including the O-D demand, path flows and the unobserved link flows. 

Estimating time-dependent (dynamic) O-D demand is substantially more complicated 

compared to the static O-D estimation problem due to the time-varying characteristic. Hence, the 

corresponding NSLP is also difficult to address. Eisenman et al. (2006) proposed a conceptual 

framework for the sensor location problem to minimize the error in the real-time O-D demand 

estimates. Fei et al. (2007) extended Eisenman et al.’s (2006) approach to examine the NSLP 

under two different scenarios (with and without budget constraints). The TDS measure proposed 

by Bierlaire (2002) to locate sensors for the static O-D estimation problem was also used in their 

study to estimate the time-dependent O-D demand. 

The NSLP has been investigated to handle different types of measurements such as AVI 

readers and license plate recognition techniques, mainly for the static O-D estimation problem. 

For instance, Chen et al. (2004) proposed a multi-objective model for locating AVI readers on 

the network, which was extended by Chen et al. (2010) to accommodate different travel demand 

patterns. Minguez et al. (2010) sought to optimize the traffic plate scanning locations for O-D 

javascript:void(0);
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demand and route flow estimation under budget constraints. The traffic plate scanning location 

problem was also studied by Castillo et al. (2013). Yang et al. (2006) and Chen et al. (2007) 

proposed addressing the screen line-based traffic counting location problem. Hu et al. (2015) 

proposed a bi-level optimization model to solve the NSLP and determine an optimal deployment 

strategy for heterogeneous sensors (vehicle detector sensors and license plate recognition). For 

the dynamic O-D demand estimation problem, Asakura et al. (2000) provided an off-line least-

squares model to simultaneously determine the O-D demand and the identification rates of AVI 

data based on the locations of the AVI readers. Zhou and List (2010) proposed a model for 

locating a limited set of traffic counting stations and AVI readers in a network so as to maximize 

the expected information gain for the dynamic O-D demand estimation problem. Zhu et al.  

(2016) proposed a NSLP model for dynamic O-D demand estimation to determine optimal 

heterogeneous sensor locations (link sensors and node sensors). 

In addition to its use in the traditional O-D demand estimation problem, NSLP has been 

used in other related domains. For example, Viti et al. (2008) solved the sensor location problem 

for the travel time estimation problem. Xing et al. (2013) proposed an information-theoretic 

sensor location model to minimize total travel time uncertainty. Bianco et al. (2014) applied a 

genetic algorithm approach to identify sensor locations for estimating all link flows in the 

network. Castillo et al. (2008a) and Viti et al. (2014) discussed the observability problem, to 

identify the set of sensor locations that would enable full O-D demand observability. He (2013) 

proposed a graphical approach to locate sensors for link flow inference. Hu et al. (2009) 

suggested a procedure that does not require any prior O-D demand matrix but entails explicit 

path enumeration, for the identification of all link flows using traffic data measurements on an 
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optimal subset of links under a budget constraint. Ng (2012) relaxed the assumption of explicit 

path enumeration by using a node-based formulation for the Hu et al. (2009) problem context. 

In the literature, most NSLP models are restricted to one type of sensor, especially for the 

dynamic O-D demand estimation problem, where only traffic data measurements collected by 

link sensors has been considered. In addition, past studies have not considered the impact on the 

optimal sensor deployment strategy due to the time duration for which traffic data measurements 

are available. For example, past studies require traffic data measurement for a link for the entire 

time period of interest (such as the peak period, which can be in the order of hours) related to 

determining the dynamic O-D demand to identify the optimal sensor deployment strategy. 

However, in practice, traffic data measurements may be available for that link for only a much 

shorter time period (for example, one hour); the NSLP models proposed in past studies are 

restrictive in that they cannot be used to determine the optimal sensor deployment strategy 

without traffic data measurements for the entire time period. The optimal sensor deployment 

strategy may change when the time duration for which traffic data measurements are available is 

limited. 

 

2.2 Objectives  

To address the aforementioned gaps, this paper proposes a NSLP model to identify the 

optimal heterogeneous sensor deployment strategy to maximize the quality of dynamic O-D 

demand estimates, or to minimize the variability of dynamic O-D demand estimates, under a 

limited budget. The sensor deployment strategy is in terms of the numbers of link (counting) and 

node (video/image) sensors and their installation locations. We assume that each time-dependent 

O-D demand is a random variable, and the variability is measured by the trace of the covariance 
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matrix of the posterior O-D demand estimates. In the proposed model, counting sensors are 

assumed to be located on links to measure link flows, while video/image sensors are assumed to 

be located at nodes to measure turning movements. We assume that the cost of a counting sensor 

is cheaper than that of a video/image sensor. To factor the time duration for which traffic data 

measurements are available, we add a time duration constraint to the proposed NSLP model that 

specifies the time duration for which traffic data measurements are available. To study the 

impact of time duration constraint on the optimal sensor deployment strategy, we compare the 

optimal sensor deployment strategy using traffic data measurements for the entire time period to 

the strategy using traffic data measurements for a shorter time period. 

A sequential sensor location algorithm that avoids matrix inversions is introduced to 

solve the proposed NSLP model. Since the costs of link and node sensors are different, the 

optimal numbers of link and node sensors cannot be simultaneously identified using a simple 

approach. The proposed algorithm first assumes the number of node sensors in the network as 

given, and under this scenario selects the sensor deployment strategy under a budget constraint 

with the lowest variability in the dynamic O-D demand estimates by sequentially adding one 

sensor (including sensor type and location) at a time to avoid matrix inversions and simplify the 

computation. The process is repeated for other scenarios with different given number of node 

sensors in the network. It then compares the selected sensor deployment strategies for various 

scenarios with given number of node sensors, and selects the optimal sensor deployment strategy 

as the one with the lowest variability in the dynamic O-D demand estimates. 

 

2.3 Methodology 

2.3.1 Relationships among variables considered in the NSLP model 

Consider the following flow conservation equation: 
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 (1) 

where  is the flow of O-D pair  with departure time ,  is the number of users 

between O-D pair  choosing path  with departure time , and  is the proportion of users 

between O-D pair  with departure time  choosing path . 

Define matrices , , and  as follows: 

 

(

2) 

  

(

3) 

 
(

4) 

where  is the vector of all considered time-dependent O-D demands,  is the vector of 

all time-dependent path flows between O-D pair  and  is the vector of all time-dependent path 

flows. 

Define a  matrix , where  is the total number of paths for O-D pair  with 

departure time , and  is the dimension of . The (k, j)th element  of  is defined as: 

 
(5) 

where  is the number of time intervals. 

Define matrix  as follows: 

 (6) 

Then, the path flows satisfy the following flow conservation condition: 
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 (7) 

The time-dependent path flow is the product of the path choice proportion and the time-

dependent O-D demand. Note that the path choice proportion is a deterministic variable, which 

can be obtained by solving the dynamic user equilibrium (DUE) problem. Then, the time-

dependent node turning movements and link flows can be derived from the path flows. 

Define  as the flow on link , and as the time-dependent link-path incidence 

indicator. , if link  belongs to path  of O-D pair  with departure time , and 

, otherwise. 

The link flow can be derived from the time-dependent path flows as follow: 

 
(8) 

Define matrices  ,  and  as follows: 

 (9) 

 (10) 

 (11) 

 (12) 

where  is the vector of all considered link flows and  is the corresponding incidence 

indicator vector.  is the vector of incidence indicators for each time-dependent path of O-D 

pair  that includes link .  is the vector of incidence indicators related to each time-dependent 

path of each O-D pair that includes link . 
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By considering an error term , the following linear relationship can be expressed 

between the path flow vector  and the link flow vector : 

 (13) 

where  are mutually independent random variables with zero mean. 

Define  as the number of users traveling from upstream node  to downstream node 

 connected by node  with departure time , and  is the incidence indicator (i.e., 

, if the sub-path made up of nodes ,  and  belongs to path  of O-D pair  with 

departure time , and , otherwise). Here,  and , where  is the set of 

upstream nodes of node  and  is the set of downstream nodes of node . 

Define a column vector  as the set of all the turning movements at node  and a row 

vector  as the set of incidence indicators related to path  of O-D pair  with departure 

time  choosing each turning movement at node . Then, vectors , ,   and  are defined 

as follow: 

 (14) 

 (15) 

 (16) 

 (17) 

where  is the vector of all considered turning movements and  is the corresponding 

incidence indicator vector.  is the vector of incidence indicators related to each time-

dependent path of O-D pair  choosing each turning movement at node .  is the vector of 
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incidence indicators related to each time-dependent path of each O-D pair choosing each turning 

movement at node . 

By considering an error term , the following linear relationship can be expressed 

between the path flow vector  and the turning movement vector : 

 (18) 

where  are mutually independent random variables with zero mean. 

According to Eqs. (7), (13) and (18), the random variables in the proposed model can be 

expressed through the following linear relationships: 

 

(19) 

In this study, since all of the considered variables are treated as random variables, the 

traffic demands between all time-dependent O-D pairs are assumed to follow multivariate normal 

(MVN) distributions. This is because these random variables are the outcome of a large number 

of independent Bernoulli experiments in which the users decide where to travel and which routes 

to choose. This assumption is similar to assumptions made in past studies (33-34). 

Specifically,  are multivariate normal random variables with mean  and variance 

,  are mutually independent normal random variables with mean  and variance , and  

are mutually independent normal random variables with mean  and variance . Based on 

Eq. (19), the prior variance-covariance matrix  is: 
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(20) 

Based on the variance-covariance matrix, the correlations among the considered variables 

can be derived, and these correlations can be used to derive the NSLP model as shown in the 

next section. 

 

2.3.2 Formulation of the NSLP models 

The prior distribution  (i.e.,  and  in Eq. (20)) of time-dependent O-D demand 

is assumed to be obtained using historical O-D data. From Eq. (20), we can derive the prior 

distribution of all variables. In turn, let  be a sensor deployment strategy whose counted flows 

are known to be  (including observed link flows and node turning movements). Then, 

, obtained by updating the counted flows, is the posterior distribution of the time-

dependent O-D demand. 

In this study, the trace  of the covariance matrix  is adopted as a measure of 

variability related to the random vector . Therefore, we adopt the trace  to represent 

the variability of the time-dependent O-D demand conditional on the counted flows . Since 

 generally depends on the counted flows , the variability of the posterior 

random vector  can be defined as the average of , as follows: 

 
(21) 

where  is the density function of the random variable  and  is its domain. 
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The NSLP can be formulated as the problem of finding the optimal sensor deployment 

strategy , which minimizes the variability of the posterior random vector  in the 

domain , subject to budget constraints. Then, the NSLP model for dynamic O-D demand 

estimation is proposed as follow: 

 
(22) 

s.t.  (23) 

where  is the cost of a link sensor,  is the cost of a node sensor,  is the overall 

available budget,  is the cardinality of the identified link set,  is the cardinality of the 

identified node set. 

By optimizing (22) and (23), the resultant optimal heterogeneous sensor deployment 

strategy depends on the variability of both prior and posterior O-D demand estimates. The 

posterior estimates are related to the relationships among the considered variables, which depend 

on the network topology and the users’ travel behaviors. In summary, the optimal heterogeneous 

sensor deployment strategy obtained by solving the proposed NSLP model incorporates the 

variability of prior O-D demand estimates, the network topology, and the users’ travel behaviors. 

As we have obtained the prior means and variance-covariance matrix of all the variables 

as shown in Eq. (20), the mean and the covariance matrix of the variables can be updated based 

on some observed variables using the following equations (Maher 1983) under the assumption of 

normal distribution: 

 (24) 
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where  and  both refer to the components of ;  is the covariance matrix 

of the observation ;  is the covariance matrix of  and ;  is the covariance matrix of  

and ;  is the covariance matrix of  and ; and  is the posterior covariance matrix of 

 and . 

Under the assumption of multivariate normal distribution, it can be shown that the 

conditional variance  does not depend on the specific counted values of  (i.e. ). 

Therefore, the trace  does not depend on the actual values of the traffic data 

measurements, but just on the random sensor deployment strategy Z . 

Hence, the optimization problem (22) and (23) can be rewritten as: 

 
(25) 

s.t.  (26) 

where  and  are derived from Eq. (20). 

In real-world applications, the time duration for which traffic data measurements are 

available is usually limited to a shorter time period compared to the entire time period of interest 

related to determining the dynamic O-D demand. To factor this, the proposed model includes a 

time duration constraint: 

 
(27) 

s.t.  (28) 

  (29) 
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where  is the departure time of user at sensor location ;  is the start time of the 

considered time duration for which traffic data measurements are available and  is the end 

time. 

Due to the time duration constraint, incidence indicators  and  are not 

necessarily 0 or 1 for deriving  and  using Eq. (20). In this case,  is equal to the 

proportion of users of path  of O-D pair  with departure time  choosing link  with departure 

time  which is in the time period .  is equal to the proportion of users of 

path  of O-D pair  with departure time  traveling from upstream node  to downstream node  

connected by node  with departure time  included in the time period . Given the 

prior O-D demand, these proportions can be obtained by solving the DUE problem. 

We denote the model without the time duration constraint as NSLP-NT model, and the 

model with the time duration constraint as NSLP-T model. 

2.3.3 The sequential sensor location algorithm 

As the costs for a link sensor and a node sensor are different, the optimal numbers of link 

sensors and node sensors cannot be determined simultaneously in a simple manner. Therefore, 

we first specify a given number of node (or link) sensors in the network, and select the sensor 

deployment strategy with the lowest variability in the dynamic O-D demand estimates. Then, we 

compare the selected sensor location strategy for different given number of node (or link) 

sensors, and choose the optimal strategy as the one with the lowest variability. 

To solve the aforementioned NSLP models, calculating the inverse of  (i.e., ) 

requires a large amount of computational effort, especially for large-scale networks since the 

dimension of  is usually very large. Interestingly, if we sequentially update one observed 
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variable at a time in Eq. (24), it does not involve matrix inverse calculation, because in such a 

case,  is a column vector and  is a scalar (i.e., ). Hence, the proposed NSLP-NT 

and NSLP-T models can be solved using a sequential sensor location algorithm, summarized 

using the following eight steps: 

Step 0: Initialization: Calculate the choice proportion matrices ,  and  by solving the 

DUE problem. 

Step 1: Calculate the prior variance and covariance of all considered variables according 

to Eq. (20). 

Step 2: Define the maximum number of node sensors  based on the budget 

constraint , i.e., . Define  as the number of node sensors, whose 

initial value is 0. Define  as the minimum value of the objective function, whose initia l 

value is equal to the trace of the prior covariance matrix of the dynamic O-D demand, that is, 

. Define  as the final (chosen) optimal heterogeneous sensor deployment 

strategy and  as the current optimal heterogeneous sensor deployment strategy; the initial 

values of  and  are both set to be null sets. 

Step 3: Identify the maximum number of link sensors  

( ). Define  as the number of the identified link sensor locations, 

 as the number of the identified node sensor locations and set the initial values of  and  to be 

0. Define  as the current value of the objective function, whose initial value is . 
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Step 4: Identify one sensor location and add it to the sensor deployment strategy . 

Define link or node  as the next sensor location which minimizes the objective function, that 

is: 

 (30) 

In this step, if  and , the new identified sensor can be a link sensor or a 

node sensor; if  and , the new identified sensor can only be a link sensor; and if 

 and , the new identified sensor can only be a node sensor. 

Step 5: Update the variance, covariance and the current value  of the objective function. 

According to Eq. (24), the variance and covariance of traffic flows can be updated using the 

following formula: 

 (31) 

where X  and Y  both refer to the components of ,  is the new identified 

sensor location by Step 4, and , which is a scalar, is the variance of . 

Step 6：If the new identified sensor location is a link sensor location, set ; 

otherwise set . If  and , continue with Step 7. Otherwise, go to Step 4. 

Step 7: Specify the optimal heterogeneous sensor deployment strategy  under the 

condition in which the defined number of node sensor locations is . If , set , 

and . 
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Step 8: If , set  and initialize the variance and covariance of all 

variables (using the values based on Step 1); set  as a null set and go to Step 3. Otherwise, stop 

the algorithmic process and specify the optimal heterogeneous sensor deployment strategy . 

In this algorithm, given the number of node sensors (in Step 2), Steps 3-7 identify one 

sensor location at a time and then update the identified sensor locations. In Step 4, only one 

sensor location is identified. In this case, because  is a column vector and  is a scalar, if 

the total number of considered links and turning movements in the network is  and the number 

of identified sensor locations is , the number of calculations needed in this step is linearly 

related to the number of the remaining links and turning movements, i.e., . Since most of 

the calculations in this algorithm are involved in Step 4, the computational time of solving the 

NSLP model is linear with respect to the number of links and turning movements in the network. 

 

2.4 Results and discussions  

We apply the proposed NSLP models and algorithm to the test network shown in Figure 

2.1, which includes 11 traffic analysis zones (100 O-D pairs), 70 nodes, and 141 directed links. 

The O-D matrix is time-dependent, and specified in 15-minute intervals. The entire analysis 

period is two hours (from 8:00 a.m. to 10:00 a.m.); hence the time-dependent O-D matrix has 

800 records (8 time intervals for 100 O-D pairs). The prior O-D demand is established from the 

historical data available for this network. The total available budget is assumed to be 300. The 

costs for a node sensor and link sensor are assumed to be 50 and 15, respectively. The numerical 

experiments were conducted using DYNASMART-P 1.3.0, and the prior traffic data 



38 
    

measurements for all links and nodes are obtained by solving the dynamic user equilibrium 

problem based on the prior O-D demand. 

Figure 2.2 shows the plots of the traces of the covariance matrices of the dynamic O-D 

demand estimation for the NSLP-NT model using the proposed sequential algorithm under 

different given number of node sensors (labeled NS# in the figure). Figure 8 shows the 

corresponding plots for the NSLP-T model, in which the time duration for which traffic data 

measurements are available is set to be one hour, from 9:00 a.m. to 10:00 a.m. As shown in 

Figures 7 and 8, the traces decrease with each added sensor. More sensors imply that more 

observed information can be collected to update the variance-covariance matrix, which can 

reduce the variability of the dynamic O-D demand estimates. The traces decrease more rapidly 

when a node sensor is added rather than a link sensor, because a node sensor can detect several 

turning movements (for example, 12 turning movements at a traditional four-way intersection) 

and thus provide more updated information compared to a link sensor. Hence, as the NS# 

increases, the traces decrease more rapidly as each node sensor is added. 

Table 2.1 shows the optimal sensor deployment strategies for the NSLP-NT model and 

Table 2.2 shows the optimal strategies for the NSLP-T model. In terms of the notation in Tables 

2.1 and 2.2, for example, 7(n) represents a node sensor located at node 7; 16-17 represents a link 

sensor on link 16-17 with upstream node 16 and downstream node 17. 

As illustrated by Tables 2.1 and 2.2, under the budget constraint, though a node sensor 

can provide more updated information compared to a link sensor, more node sensors cannot 

reduce the variability of the O-D demand estimates. Thereby, the number of node sensors in the 

optimal heterogeneous sensor deployment strategy for the NSLP-NT model is 3, though the 

maximum number of node sensors is 6 because it leads to the lowest objective function value 
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(bolded in the table). When there are 6 node sensors in the network, the allowed number of link 

sensors is 0. However, in the optimal heterogeneous sensor deployment strategy, the number of 

link sensors is 8, though the number of node sensors is only 3. This is because a link sensor is 

much cheaper than a node sensor, and more node sensors can imply fewer link sensors, leading 

to a tradeoff in terms of the desirable numbers of each sensor type. The number of node sensors 

in the optimal heterogeneous sensor deployment strategy for the NSLP-T model is 5. This higher 

value compared to the NSLP-NT case is because the more constrained context due to the time 

duration constraint under NSLP-T favors the use of more node sensors to elicit more 

information. In summary, the optimal numbers for both the link sensors and node sensors can be 

determined using the proposed algorithm. 

In addition, from Tables 2.1 and 2.2, the optimal heterogeneous sensor deployment 

strategy obtained for the NSLP-T model is different from that of the NSLP-NT model. This 

implies that considering the time duration for which traffic data measurements are available can 

lead to a different optimal sensor deployment strategy. The objective function value of the 

NSLP-NT model is lower than that of the NSLP-T model as it is a less constrained problem. This 

implies that the posterior variance of variables in the NSLP-T model is larger than that in the 

NSLP-NT model. This is because in the NSLP-NT model the update information is collected for 

the entire time period of interest related to determining the dynamic O-D demands, while the 

update information in the NSLP-T model is collected for only the time duration specified. Hence, 

the NSLP-T model has less observed information to update the posterior variance which leads to 

a larger variability in the dynamic O-D demand estimates as more observed information implies 

lower variability of the O-D demand estimates (as illustrated in Figures 7 and 8). 
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To further compare the NSLP-T and the NSLP-NT models, we use the optimal sensor 

deployment strategy from the NSLP-NT model to collect traffic data measurements, but now 

with the time duration constraint used for the NSLP-T model. Figure 9 shows how the traces of 

the covariance matrices of the dynamic O-D demand estimates of the two models change after 

updating the identified sensor location one-at-a-time using the proposed sequential algorithm. 

Note that compared to the NSLP-NT model, the trace of the covariance matrix of the dynamic O-

D demand estimation under the NSLP-T model decreases more rapidly and the optimal value is 

lower (the traces in NSLP-T and NSLP-NT models are 24308.59 and 25123.47, respectively). 

This demonstrates the superior accuracy and performance of the NSLP-T model. That is, the 

NSLP-T model optimal sensor deployment strategy performs better than the NSLP-NT model 

optimal sensor deployment strategy with the consideration of the same time duration constraint 

used in the NSLP-T model. 
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Figure 2.2 Traces of covariance matrices of dynamic O-D demand estimation after 

updating each identified sensor location with different given number of node sensors, without 

considering the time duration constraint. 
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Figure 2.3 Traces of covariance matrices of dynamic O-D demand estimation after 

updating each identified sensor location with different given number of node sensors, 

considering the time duration constraint. 
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Figure 2.4 Traces of covariance matrices of the dynamic O-D demand estimates for the 

two models after updating the sensor locations under the same time duration constraint. 
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Table 2.1 Sensor Deployment Strategies for the NSLP-NT Model 

Number 
of node 
sensors 

Sensor deployment strategy 
Objective 
function 
value 

0 16-17, 22-18, 13-11, 31-3, 3-31, 11-13, 64-7, 29-2, 44-1, 47-19, 10-
13, 67-2, 19-47, 7-64, 36-7, 7-36, 1-44, 60-14, 14-60, 10-11 25351.54 

1 7(n), 16-17, 10-7, 7-36, 13-11, 22-18, 31-3, 10-11, 3-31, 11-13, 44-
1, 47-19, 29-2, 10-13, 67-2, 19-47, 14-60 24724.28 

2 7(n), 3(n), 1-2, 16-14, 19-1, 22-18, 18-16, 3-31, 11-13, 14-16, 31-3, 
7-36, 18-19, 14-13, 10-11 21507.6 

3 7(n), 3(n), 1(n), 15, 12, 3-31, 5-3, 7-36, 67-2, 19-18, 1-44, 19-1, 16-
17 21338.33 

4 7(n), 3(n), 1(n), 16(n), 18-16, 3-31, 5-3, 7-36, 22-18, 19-1 21682.16 
5 7(n), 3(n), 1(n), 16(n), 2(n), 5-3, 3-31, 7-36 21591.57 
6 7(n), 3(n), 1(n), 16(n), 2(n), 10(n) 21777.34 
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Table 2.2 Model Sensor Deployment Strategies for the NSLP-T Model 

Number 
of node 
sensors 

Sensor deployment strategy 
Objective 
function 
value 

0 16-17, 13-11, 31-3, 11-13, 22-18, 3-31, 1-44, 64-7, 44-1, 10-11, 
19-47, 10-13, 29-2, 36-7, 7-36, 67-2, 60-14, 14-60, 47-19, 2-29 25352.05 

1 7(n), 16-17, 64-7, 7-36, 13-11, 19-47, 1-44, 11-13, 36-7, 3-31, 60-
14, 7-10, 5-7, 31-3, 44-1, 10-13, 22-18 25074.89 

2 7(n), 2(n), 16-17, 2-67, 2-29, 64-7, 7-36, 13-11, 1-2, 67-2, 29-2, 
11-13, 19-47, 36-7, 60-14 24851.41 

3 7(n), 2(n), 14(n), 16-17, 2-67, 2-29, 64-7, 14-60, 11-13, 1-2, 60-
14, 67-2, 22-18 24761.18 

4 7(n), 2(n), 14(n), 16(n), 14-16, 2-67, 2-29, 64-7, 14-60, 16-17 24630.79 
5 7(n), 2(n), 14(n), 16(n), 1(n), 44-1, 60-14, 1-2 24308.59 
6 7(n), 2(n), 14(n), 16(n), 1(n), 10(n) 24603.31 
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CHAPTER 3.  CONCLUSIONS 

To estimate dynamic O-D demand, a Bayesian method is proposed. The method can 

synthesize multiple sources of data, including link counts, turning movements at intersections, 

sub-path flows and/or sub-path travel time. Demand between each O-D pair at each departure 

time is assumed to satisfy normal distribution. Results shows that the total variability of O-D 

demand decreases with each added traffic count. More traffic counts can lead to smaller variance 

of the dynamic O-D demand, which means updating each traffic count can reduce the uncertainty 

in the O-D estimation. Using the proposed algorithm, the total deviations between estimated and 

observed traffic counts is decreasing at each iteration, as supported by three measures of 

performance. After a few iterations, the three measures all decrease to small values and become 

flat, which implies a well fit between estimated and observed traffic counts. Moreover, the 

source-specific deviations between estimated and observed traffic counts are small too. This 

demonstrates the proposed Bayesian method can synthesize multiple sources of data well.  It also 

implies that more traffic counts lead to lower uncertainty of the O-D demand estimates, resulting 

a better accurate estimation. 

To study the sub-problem of dynamic O-D estimation problem, this research proposes a 

network sensor location problem model to determine the optimal heterogeneous sensor 

deployment strategy for the dynamic O-D demand estimation problem. By maximizing the 

quality or minimizing the variability of the O-D demand estimates under a given budget 

constraint, the proposed model can be used to determine the optimal link (counting) and node 

(video/image) sensors numbers and their installation locations. In the proposed model, the trace 

of the covariance matrix of the posterior O-D demand estimates is adopted as a measure of the 

variability of the O-D demand estimates. The time duration for which traffic data measurements 
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are available is constrained in the proposed model to factor that traffic data are usually collected 

for a shorter time period in practice rather than the entire time period of interest (such as the peak 

period) in the context of determining the optimal sensor deployment strategy. Results show that 

node sensors normally can be identified preferentially than links sensors and a tradeoff in terms 

of the desirable numbers of each sensor type can be obtained by the proposed algorithm. Results 

also illustrates that the optimal sensor deployment strategy can change significantly under 

constraint of time duration for which traffic data measurements are available.  
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